Wir lernen Mathematik 4 | Teil C

42 Das Flächenmaß Quadratmeter und Rechtecken mit Einheitsmaßen (m²) | Erfassen der Maßbeziehung m² – dm² – cm² – mm² Einführen der Maßeinheit m² | Schaffen von Modellvorstellungen: Vergleichen und Berechnen des Flächeninhalts von Quadraten 1 Stellt aus mehreren Bögen Packpapier einige Quadratmeter her! a) b) Wie viele Kinder können auf einem Quadratmeter stehen, ohne aneinanderzustoßen? Wie viele Kinder können höchstens auf einem Quadratmeter stehen? Schätzt, wie viele Quadratmeter einige Flächen in der Schule haben: Tafel, Türe, Fenster, Wände, Fußboden der Klasse, des Turnsaals, der Garderobe, der Pausenhalle ... Überprüft durch Auslegen mit den Quadratmetern! 3 Ein Quadratmeter verkleinert dargestellt: 5 mm entsprechen 1 dm. a) b) In Wirklichkeit hat 1 m² eine Seitenlänge von Zeichne in den verkleinerten Quadratmeter die verkleinerten Quadratdezimeter ein! Sie stellen die Quadratdezimeter dar, die in einem Quadratmeter enthalten sind. m. 2 Legt im Schulhof mit den Quadratmetern Flächen, die 4 m², 6 m², 8 m² groß sind! Umfahrt die Flächen mit Kreide und denkt euch ein Spiel dazu aus! 4 Was kann nicht stimmen? Kreuze an, was sein kann! Die Schulküche ist 16 m² groß. Der Turnsaal der Schule ist 50 m² groß. Das Klassenzimmer ist 200 m² groß. Die Pausenhalle ist 9 m² groß. Die Eingangstüre der Schule hat 20 m². Die Tafelfläche der Klasse beträgt 4 m². . 100 . 100 . 100 1 mm² 1 cm² 1 dm² 1 m² Umrechnungszahl 100! Der Flächeninhalt eines Quadrates mit der Seitenlänge 1 m ist ein Quadratmeter. 1 m² 1 Quadratmeter 10 Reihen: 1 Reihe: = dm² dm² . = dm² 1m² dm² = dm² 1m² = cm² = mm² /

RkJQdWJsaXNoZXIy NDYyMTE=